Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.699
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 318, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710703

RESUMO

Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Fator 3 Ativador da Transcrição , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Exossomos , Glioblastoma , Células-Tronco Neoplásicas , Temozolomida , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Exossomos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus
2.
Cell Death Dis ; 15(5): 306, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693105

RESUMO

Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .


Assuntos
Camptotecina/análogos & derivados , Neoplasias do Colo , Fluoruracila , Células-Tronco Neoplásicas , Esferoides Celulares , Receptores alfa dos Hormônios Tireóideos , Tri-Iodotironina , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Células CACO-2 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Tri-Iodotironina/farmacologia , Leucovorina/farmacologia , Leucovorina/uso terapêutico , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Fenótipo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Retinal Desidrogenase/metabolismo , Retinal Desidrogenase/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
3.
Hepatol Commun ; 8(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696353

RESUMO

BACKGROUND: Transarterial chemoembolization is the first-line treatment for intermediate-stage HCC. However, the response rate to transarterial chemoembolization varies, and the molecular mechanisms underlying variable responses are poorly understood. Patient-derived hepatocellular carcinoma organoids (HCCOs) offer a novel platform to investigate the molecular mechanisms underlying doxorubicin resistance. METHODS: We evaluated the effects of hypoxia and doxorubicin on cell viability and cell cycle distribution in 20 patient-derived HCCO lines. The determinants of doxorubicin response were identified by comparing the transcriptomes of sensitive to resistant HCCOs. Candidate genes were validated by pharmacological inhibition. RESULTS: Hypoxia reduced the proliferation of HCCOs and increased the number of cells in the G0/G1 phase of the cell cycle, while decreasing the number in the S phase. The IC50s of the doxorubicin response varied widely, from 29nM to >1µM. Doxorubicin and hypoxia did not exhibit synergistic effects but were additive in some HCCOs. Doxorubicin reduced the number of cells in the G0/G1 and S phases and increased the number in the G2 phase under both normoxia and hypoxia. Genes related to drug metabolism and export, most notably ABCB1, were differentially expressed between doxorubicin-resistant and doxorubicin-sensitive HCCOs. Small molecule inhibition of ABCB1 increased intracellular doxorubicin levels and decreased drug tolerance in resistant HCCOs. CONCLUSIONS: The inhibitory effects of doxorubicin treatment and hypoxia on HCCO proliferation are variable, suggesting an important role of tumor-cell intrinsic properties in doxorubicin resistance. ABCB1 is a determinant of doxorubicin response in HCCOs. Combination treatment of doxorubicin and ABCB1 inhibition may increase the response rate to transarterial chemoembolization.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Carcinoma Hepatocelular , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Organoides , Doxorrubicina/farmacologia , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Organoides/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimioembolização Terapêutica , Ciclo Celular/efeitos dos fármacos
4.
PLoS One ; 19(3): e0298533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536776

RESUMO

An important cellular barrier to maintain the stability of the brain's internal and external environment is the blood-brain barrier (BBB). It also prevents harmful substances from entering brain tissue through blood circulation while providing protection for the central nervous system. It should be noted, however, that the intact BBB can be a barrier to the transport of most drugs into the brain via the conventional route of administration, which can prevent them from reaching effective concentrations for the treatment of disorders affecting the central nervous system. Electroacupuncture stimulation has been shown to be effective at opening the BBB in a series of experimental studies. This study systematically analyzes the possibility and mechanism by which electroacupuncture opens the BBB. In PubMed, Web of Science, VIP Database, Wanfang Database, and the Chinese National Knowledge Infrastructure, papers have been published for nearly 22 years aimed at opening the BBB and its associated structures. A comparison of EB content between electroacupuncture and control was selected as the primary outcome. There were also results on vascular endothelial growth factor (VEGF), nerve growth factor (NGF), P-Glycoprotein (P-gp), Matrix Metalloproteinase 9 (MMP-9), and glial fibrillary acidic protein (GFAP). We utilized Review Manager software analysis to analyze correlations between studies with a view to exploring the mechanisms of similarity. Evans Blue infiltration forest plot: pooled effect size of 2.04, 95% CI: 1.21 to 2.87, P < 0.01. These results indicate that electroacupuncture significantly increases EB penetration across the BBB. Most studies have reported that GFAP, MMP-9, and VEGF were upregulated after treatment. P-gp expression decreased as well. Electroacupuncture can open the BBB, and the sparse-dense wave is currently the most effective electroacupuncture frequency for opening the BBB. VEGF plays an important role in opening the BBB. It is also important to regulate the expression of MMP-9 and GFAP and inhibit the expression of P-gp.


Assuntos
Barreira Hematoencefálica , Eletroacupuntura , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos Sprague-Dawley , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Permeabilidade
5.
J Med Chem ; 67(7): 5854-5865, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38544305

RESUMO

The blood-brain barrier (BBB) poses a significant obstacle in developing therapeutics for neurodegenerative diseases and central nervous system (CNS) disorders. P-glycoprotein (P-gp), a multidrug resistance protein, is a critical gatekeeper in the BBB and plays a role in cancer chemoresistance. This paper uses cryo-EM P-gp structures as starting points with an induced fit docking (IFD) model to evaluate 19 pairs of compounds with known P-gp efflux data. The study reveals significant differences in binding energy and sheds light on structural modifications' impact on efflux properties. In the cases examined, fluorine incorporation influences the efflux by altering the molecular conformation rather than proximal heteroatom basicity. Although there are limitations in addressing covalent interactions or when binding extends into the more flexible vestibule region of the protein, the results provide valuable insights and potential strategies to overcome P-gp efflux, contributing to the advancement of drug development for both CNS disorders and cancer therapies.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ligantes , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Neoplasias/metabolismo
6.
Eur J Pharm Biopharm ; 198: 114267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514020

RESUMO

Due to the high prevalence of cancer, progress in the management of cancer is the need of the hour. Most cancer patients develop chemotherapeutic drug resistance, and many remain insidious due to overexpression of Multidrug Resistance Protein 1 (MDR1), also known as Permeability-glycoprotein (P-gp) or ABCB1 transporter (ATP-binding cassette subfamily B member 1). P-gp, a transmembrane protein that protects vital organs from outside chemicals, expels medications from malignant cells. The blood-brain barrier (BBB), gastrointestinal tract (GIT), kidneys, liver, pancreas, and cancer cells overexpress P-gp on their apical surfaces, making treatment inefficient and resistant. Compounds that compete with anticancer medicines for transportation or directly inhibit P-gp may overcome biological barriers. Developing nanotechnology-based formulations may help overcome P-gp-mediated efflux and improve bioavailability and cell chemotherapeutic agent accumulation. Nanocarriers transport pharmaceuticals via receptor-mediated endocytosis, unlike passive diffusion, which bypasses ABCB1. Anticancer drugs and P-gp inhibitors in nanocarriers may synergistically increase drug accumulation and chemotherapeutic agent toxicity. The projection of desirable binding and effect may be procured initially by molecular docking of the inhibitor with P-gp, enabling the reduction of preliminary trials in formulation development. Here, P-gp-mediated efflux and several possible outcomes to overcome the problems associated with currently prevalent cancer treatments are highlighted.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resistência a Múltiplos Medicamentos , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Preparações Farmacêuticas , Neoplasias/tratamento farmacológico
7.
Int J Pharm ; 655: 124028, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38518871

RESUMO

Ovarian cancer is a malignant tumor that seriously endangers the lives of women, with chemotherapy being the primary clinical treatment. However, chemotherapy encounters the problem of generating multidrug resistance (MDR), mainly due to drug efflux induced by P-glycoprotein (P-gp), which decreases intracellular accumulation of chemotherapeutic drugs. The drugs efflux mediated by P-gp requires adenosine triphosphate (ATP) hydrolysis to provide energy. Therefore, modulating energy metabolism pathways and inhibiting ATP production may be a potential strategy to reverse MDR. Herein, we developed a PTX-ATO-QUE nanoparticle (PAQNPs) based on a PLGA-PEG nanoplatform capable of loading the mitochondrial oxidative phosphorylation (OXPHOS) inhibitor atovaquone (ATO), the glycolysis inhibitor quercetin (QUE), and the chemotherapeutic drug paclitaxel (PTX) to reverse MDR by inhibiting energy metabolism through multiple pathways. Mechanistically, PAQNPs could effectively inhibit the OXPHOS and glycolytic pathways of A2780/Taxol cells by suppressing the activities of mitochondrial complex III and hexokinase II (HK II), respectively, ultimately decreasing intracellular ATP levels in tumor cells. Energy depletion can effectively inhibit cell proliferation and reduce P-gp activity, increasing the chemotherapeutic drug PTX accumulation in the cells. Moreover, intracellular reactive oxygen species (ROS) is increased with PTX accumulation and leads to chemotherapy-resistant cell apoptosis. Furthermore, PAQNPs significantly inhibited tumor growth in the A2780/Taxol tumor-bearing NCG mice model. Immunohistochemical (IHC) analysis of tumor tissues revealed that P-gp expression was suppressed, demonstrating that PAQNPs are effective in reversing MDR in tumors by inducing energy depletion. In addition, the safety study results, including blood biochemical indices, major organ weights, and H&E staining images, showed that PAQNPs have a favorable in vivo safety profile. In summary, the results suggest that the combined inhibition of the two energy pathways, OXPHOS and glycolysis, can enhance chemotherapy efficacy and reverse MDR in ovarian cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Paclitaxel , Neoplasias Ovarianas/patologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo
8.
Sci Rep ; 14(1): 7589, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555345

RESUMO

P-glycoprotein (P-gp) imparts multi-drug resistance (MDR) on the cancers cell and malignant tumor clinical therapeutics. We report a class of newly designed and synthesized oxygen-heterocyclic-based pyran analogues (4a-l) bearing different aryl/hetaryl-substituted at the 1-postion were synthesized, aiming to impede the P-gp function. These compounds (4a-l) have been tested against cancerous PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines as well as non-cancerous HFL-1 and WI-38 cell lines to determine their anti-proliferative potency.The findings demonstrated the superior potency of 4a-c with 4-F, 2-Cl, and 3-Cl derivatives and 4h,g with 4-NO2, 4-MeO derivatives against PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines.Compounds 4a-c were tested for P-gp inhibition and demonstrated significant vigour against MCF-7/ADR cells with IC50 = 5.0-10.7 µM. The Rho123 accumulation assay showed that compounds 4a-c adequately inhibited P-gp function, as predicted. Furthermore, 4a or 4b administration resulted in MCF-7/ADR cell accumulation in the S phase, while compound 4c induced apoptosis by causing cell cycle arrest at G2/M. The molecular docking was applied to understand the likely modes of action and guide us in the rational design of more potent analogs. The investigate derivatives showed their good binding potential for p-gp active site with excellent docking scores and interactions. Finally, the majority of investigated derivatives 4a-c derivatives showed high oral bioavailability, but they did not cross the blood-brain barrier. These results suggest that they have favorable pharmacokinetic properties. Therefore, these compounds could serve as leads for designing more potent and stable drugs in the future.


Assuntos
Antineoplásicos , Oxigênio , Humanos , Células MCF-7 , Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia
9.
Toxicol Appl Pharmacol ; 485: 116888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452945

RESUMO

Upregulation of the multidrug efflux pump ABCB1/MDR1 (P-gp) and the anti-apoptotic protein BIRC5/Survivin promotes multidrug resistance in various human cancers. GDC-0152 is a DIABLO/SMAC mimetic currently being tested in patients with solid tumors. However, it is still unclear whether GDC-0152 is therapeutically applicable for patients with ABCB1-overexpressing multidrug-resistant tumors, and the molecular mechanism of action of GDC-0152 in cancer cells is still incompletely understood. In this study, we found that the potency of GDC-0152 is unaffected by the expression of ABCB1 in cancer cells. Interestingly, through in silico and in vitro analysis, we discovered that GDC-0152 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multidrug efflux activity at sub-cytotoxic concentrations (i.e., 0.25×IC50 or less). Further investigation revealed that GDC-0152 also decreases BIRC5 expression, induces mitophagy, and lowers intracellular ATP levels in cancer cells at low cytotoxic concentrations (i.e., 0.5×IC50). Co-treatment with GDC-0152 restored the sensitivity to the known ABCB1 substrates, including paclitaxel, vincristine, and YM155 in ABCB1-expressing multidrug-resistant cancer cells, and it also restored the sensitivity to tamoxifen in BIRC5-overexpressing tamoxifen-resistant breast cancer cells in vitro. Moreover, co-treatment with GDC-0152 restored and potentiated the anticancer effects of paclitaxel in ABCB1 and BIRC5 co-expressing xenograft tumors in vivo. In conclusion, GDC-0152 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide essential information to physicians for designing a more patient-specific GDC-0152 clinical trial program in the future.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Benzodioxóis , Resistencia a Medicamentos Antineoplásicos , Indolizinas , Survivina , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Survivina/genética , Survivina/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Camundongos Nus , Camundongos , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Reguladoras de Apoptose/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Paclitaxel/farmacologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Camundongos Endogâmicos BALB C , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/genética
10.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527694

RESUMO

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Encéfalo , Indazóis , Morfolinas , Inibidores de Proteínas Quinases , Pirazinas , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Camundongos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Camundongos Knockout , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Administração Oral
11.
Eur J Med Chem ; 268: 116207, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364715

RESUMO

The inhibition of P-glycoprotein (P-gp) has emerged as an intriguing strategy for circumventing multidrug resistance (MDR) in anticancer chemotherapy. In this study, we have designed and synthesized 30 indole-selenides as a new class of P-gp inhibitors based on the scaffold hopping strategy. Among them, the preferred compound H27 showed slightly stronger reversal activity (reversal fold: 271.7 vs 261.6) but weaker cytotoxicity (inhibition ratio: 33.7% vs 45.1%) than the third-generation P-gp inhibitor tariquidar on the tested MCF-7/ADR cells. Rh123 accumulation experiments and Western blot analysis demonstrated that H27 displayed excellent MDR reversal activity by dose-dependently inhibiting the efflux function of P-gp rather than its expression. Besides, UIC-2 reactivity shift assay revealed that H27 could bind to P-gp directly and induced a conformation change of P-gp. Moreover, docking study revealed that H27 matched well in the active pockets of P-gp by forming some key H-bonding interactions, arene-H interactions and hydrophobic contacts. These results suggested that H27 is worth to be a starting point for the development of novel Se-containing P-gp inhibitors for clinic use.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Doxorrubicina/farmacologia , Células MCF-7 , Rodamina 123/química , Rodamina 123/metabolismo , Rodamina 123/farmacologia
12.
Phytomedicine ; 126: 155460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394731

RESUMO

BACKGROUND: Multidrug resistance is the major obstacle to cancer chemotherapy. Modulation of P-glycoprotein and drug combination approaches have been considered important strategies to overcome drug resistance. PURPOSE: Aiming at generating a small library of Amaryllidaceae-type alkaloids to overcome drug resistance, two major alkaloids, isolated from Pancratium maritimum, lycorine (1), and 2α-10bα-dihydroxy-9-O-demethylhomolycorine (2), were derivatized, giving rise to nineteen derivatives (3 - 21). METHODS: The main chemical transformation of lycorine resulted from the cleavage of ring E of the diacetylated lycorine derivative (3) to obtain compounds that have carbamate and amine functions (5 - 16), while acylation of compound 2 provided derivatives 17 - 21. Compounds 1 - 21 were evaluated for their effects on cytotoxicity, and drug resistance reversal, using resistant human ovarian carcinoma cells (HOC/ADR), overexpressing P-glycoprotein (P-gp/ABCB1), as model. RESULTS: Excluding lycorine (1) (IC50 values of 1.2- 2.5 µM), the compounds were not cytotoxic or showed moderate/weak cytotoxicity. Chemo-sensitization assays were performed by studying the in vitro interaction between the compounds and the anticancer drug doxorubicin. Most of the compounds have shown synergistic interactions with doxorubicin. Compounds 5, 6, 9 - 14, bearing both carbamate and aromatic amine moieties, were found to have the highest sensitization rate, reducing the dose of doxorubicin 5-35 times, highlighting their potential to reverse drug resistance in combination chemotherapy. Selected compounds (4 - 6, 9 - 14, and 21), able of re-sensitizing resistant cancer cells, were further evaluated as P-gp inhibitors. Compound 11, which has a para­methoxy-N-methylbenzylamine moiety, was the strongest inhibitor. In the ATPase assay, compounds 9-11 and 13 behaved as verapamil, suggesting competitive inhibition of P-gp. At the same time, none of these compounds affected P-gp expression at the mRNA or protein level. CONCLUSIONS: This study provided evidence of the potential of Amaryllidaceae alkaloids as lead candidates for the development of MDR reversal agents.


Assuntos
Adenocarcinoma , Alcaloides , Alcaloides de Amaryllidaceae , Antineoplásicos , Fenantridinas , Humanos , Alcaloides de Amaryllidaceae/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Alcaloides/farmacologia , Carbamatos/farmacologia , Linhagem Celular Tumoral
13.
Acta Pharmacol Sin ; 45(5): 1060-1076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228910

RESUMO

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Diterpenos , Resistencia a Medicamentos Antineoplásicos , Compostos de Epóxi , Proteínas Hedgehog , Fator 1-alfa Nuclear de Hepatócito , Neoplasias Pulmonares , Paclitaxel , Fenantrenos , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Humanos , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Hedgehog/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Animais , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Camundongos , Camundongos Endogâmicos BALB C , Células A549
14.
Sci Rep ; 14(1): 70, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167542

RESUMO

Chemotherapy is a powerful means of cancer treatment but its efficacy is compromised by the emergence of multidrug resistance (MDR), mainly linked to the efflux transporter ABCB1/P-glycoprotein (P-gp). Based on the chemical structure of betulin, identified in our previous work as an effective modulator of the P-gp function, a series of analogs were designed, synthesized and evaluated as a source of novel inhibitors. Compounds 6g and 6i inhibited rhodamine 123 efflux in the P-gp overexpressed leukemia cells, K562/Dox, at concentrations of 0.19 µM and 0.39 µM, respectively, and increased the intracellular accumulation of doxorubicin at the submicromolar concentration of 0.098 µM. Compounds 6g and 6i were able to restore the sensitivity of K562/Dox to Dox at 0.024 µM and 0.19 µM, respectively. Structure-activity relationship analysis and molecular modeling revealed important information about the structural features conferring activity. All the active compounds fitted in a specific region involving mainly transmembrane helices (TMH) 4-6 from one homologous half and TMH 7 and 12 from the other, also showing close contacts with TMH 6 and 12. Compounds that bound preferentially to another region were inactive, regardless of their free energy of binding. It should be noted that compounds 6g and 6i were devoid of toxic effects against peripheral blood mononuclear normal cells and erythrocytes. The data obtained indicates that both compounds might be proposed as scaffolds for obtaining promising P-gp inhibitors for overcoming MDR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Leucócitos Mononucleares/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células K562 , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo
15.
Drug Metab Dispos ; 52(2): 95-105, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071533

RESUMO

To facilitate the design of drugs readily able to cross the blood brain barrier (BBB), a Madin-Darby canine kidney (MDCK) cell line was established that over expresses both P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), the main human efflux transporters of the BBB. Proteomics analyses indicate BCRP is expressed at a higher level than Pgp in this cell line. This cell line shows good activity for both transporters [BCRP substrate dantrolene efflux ratio (ER) 16.3 ± 0.9, Pgp substrate quinidine ER 27.5 ± 1.2], and use of selective transporter inhibitors enables an assessment of the relative contributions to overall ERs. The MDCKII-MDR1-BCRP ER negatively correlates with rat unbound brain/unbound plasma ratio, Kpuu Highly brain penetrant compounds with rat Kpuu ≥ 0.3 show ERs ≤ 2 in the MDCKII-MDR1-BCRP assay while compounds predominantly excluded from the brain, Kpuu ≤ 0.05, demonstrate ERs ≥ 20. A subset of compounds with MDCKII-MDR1-BCRP ER < 2 and rat Kpuu < 0.3 were shown to be substrates of rat Pgp using a rat transfected cell line, MDCKII-rMdr1a. These compounds also showed ERs > 2 in the human National Institutes of Health (NIH) MDCKI-MDR1 (high Pgp expression) cell line, which suggests that they are weak human Pgp substrates. Characterization of 37 drugs targeting the central nervous system in the MDCKII-MDR1-BCRP efflux assay show 36 have ERs < 2. In drug discovery, use of the MDCKII-MDR1-BCRP in parallel with the NIH MDCKI-MDR1 cell line is useful for identification of compounds with high brain penetration. SIGNIFICANCE STATEMENT: A single cell line that includes both the major human efflux transporters of the blood brain barrier (MDCKII-MDR1-BCRP) has been established facilitating the rapid identification of efflux substrates and enabling the design of brain penetrant molecules. Efflux ratios using this cell line demonstrate a clear relationship with brain penetration as defined by rat brain Kpuu.


Assuntos
Barreira Hematoencefálica , Proteínas de Neoplasias , Humanos , Animais , Cães , Ratos , Barreira Hematoencefálica/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Linhagem Celular , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
16.
Phytomedicine ; 123: 155210, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006807

RESUMO

BACKGROUND: Oncogenic multidrug resistance (MDR) is a tough question in cancer therapy. However, no effective medications targeting oncogenic MDR are currently available. Studies have demonstrated that mosloflavone exerts anti-inflammatory effects, yet, its potential to ameliorate MDR remains unclear. PURPOSE: This study aimed to access the capability and elucidate molecular mechanisms of mosloflavone as a MDR resensitizing candidate. METHODS: We investigated the ability of mosloflavone to reverse oncogenic MDR and investigated its underlying mechanisms through cytotoxicity assay, cell cycle assay, apoptosis assay, and zebrafish xenograft model. The modulatory interplay between mosloflavone and P-gp was investigated through analysis of calcein-AM uptake, substrate efflux, ATPase assays, and molecular docking simulation. RESULTS: Mosloflavone inhibited P-gp efflux function in an uncompetitive manner without altering ABCB1 gene expression. In addition, it stimulated P-gp ATPase activity by binding to an active site distinct from that of verapamil. Regarding MDR reversal potential, mosloflavone resensitized MDR cancer cells to chemotherapies by arresting cell cycle and triggering apoptosis, possibly by enhancing reactive oxygen species accumulation and reducing phospho-STAT3. Moreover, in the zebrafish xenograft model, mosloflavone significantly potentiated the antitumor effect of paclitaxel. CONCLUSION: Our findings underscore the potential of mosloflavone as a novel dual modulator of STAT3 and P-gp, indicating it is a promising candidate for overcoming MDR in cancer treatment.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Flavonoides , Animais , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Peixe-Zebra/metabolismo , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Antineoplásicos/farmacologia , Fator de Transcrição STAT3/metabolismo
17.
J Pharm Sci ; 113(5): 1209-1219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37984697

RESUMO

To clarify the regulation of drug absorption by the enteric nervous system, we investigated how adrenergic agonists (adrenaline (ADR), clonidine (CLO), dobutamine (DOB)) and dibutyryl cAMP (DBcAMP) affected P-glycoprotein (P-gp) function by utilizing isolated rat jejunal sheets and Caco-2 cell monolayers. ADR and CLO significantly decreased the secretory transport (Papptotal) of rhodamine-123 and tended to decrease the transport via P-gp (PappP-gp) and passive transport (Papppassive). In contrast, DBcAMP significantly increased and DOB tended to increase Papptotal and both tended to increase PappP-gpand Papppassive. Changes in P-gp expression on brush border membrane by adrenergic agonists and DBcAMP were significantly correlated with PappP-gp, while P-gp expression was not changed in whole cell homogenates, suggesting that the trafficking of P-gp would be responsible for its functional changes. Papppassive was inversely correlated with transmucosal or transepithelial electrical resistance, indicating that adrenergic agonists affected the paracellular permeability. Adrenergic agonists also changed cAMP levels, which were significantly correlated with PappP-gp. Furthermore, protein kinase A (PKA) or PKC inhibitor significantly decreased PappP-gp in Caco-2 cell monolayers, suggesting that they would partly contribute to the changes in P-gp activity. In conclusion, adrenergic agonists regulated P-gp function and paracellular permeability, which would be caused via adrenoceptor stimulation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Agonistas Adrenérgicos , Humanos , Ratos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Bucladesina/metabolismo , Transporte Biológico/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Epinefrina , Absorção Intestinal
18.
J Biol Chem ; 300(2): 105594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145744

RESUMO

ABCB5 is a member of the ABC transporter superfamily composed of 48 transporters, which have been extensively studied for their role in cancer multidrug resistance and, more recently, in tumorigenesis. ABCB5 has been identified as a marker of skin progenitor cells, melanoma, and limbal stem cells. It has also been associated with multidrug resistance in several cancers. The unique feature of ABCB5 is that it exists as both a full transporter (ABCB5FL) and a half transporter (ABCB5ß). Several studies have shown that the ABCB5ß homodimer does not confer multidrug resistance, in contrast to ABCB5FL. In this study, using three complementary techniques, (1) nanoluciferase-based bioluminescence resonance energy transfer, (2) coimmunoprecipitation, and (3) proximity ligation assay, we identified two novel heterodimers in melanoma: ABCB5ß/B6 and ABCB5ß/B9. Both heterodimers could be expressed in High-Five insect cells and ATPase assays revealed that both functional nucleotide-binding domains of homodimers and heterodimers are required for their basal ATPase activity. These results are an important step toward elucidating the functional role of ABCB5ß in melanocytes and melanoma.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Melanoma , Humanos , Adenosina Trifosfatases/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/isolamento & purificação , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Melanoma/genética , Melanoma/fisiopatologia , Células HEK293
19.
J Ethnopharmacol ; 322: 117598, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38113989

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Multi-Drug Resistance (MDR), mediated by P-glycoprotein (P-gp) is one of the barriers to successful chemotherapy in colon cancer patients. Annona muricata L. (A.muricata), commonly known as soursop/Graviola, is a medicinal plant that has been traditionally used in treating diverse diseases including cancer. Phytochemicals of A.muricata (Annonaceous Acetogenins-AGEs) have been well-reported for their anti-cancer effects on various cancers. AIM OF THE STUDY: The study aimed to examine the effect of AGEs in reversing MDR in colorectal cancer cells. METHODS: Based on molecular docking and molecular dynamic simulation, the stability of annonacin upon P-gp was investigated. Further in vitro studies were carried in oxaliplatin-resistant human colon cancer cells (SW480R) to study the biological effect of annonacin, in reversing drug resistance in these cells. RESULTS: Molecular docking and simulation studies have indicated that annonacin stably interacted at the drug binding site of P-gp. In vitro analysis showed that annonacin was able to significantly reduce the expression of P-gp by 2.56 folds. It also induced apoptosis in the drug-resistant colon cancer cells. Moreover, the intracellular accumulation of P-gp substrate (calcein-AM) was observed to increase in resistant cells upon treatment with annonacin. CONCLUSION: Our findings suggest that annonacin could inhibit the efflux of chemotherapeutic drugs mediated by P-gp and thereby help in reversing MDR in colon cancer cells. Further in vivo studies are required to decipher the underlying mechanism of annonacin in treating MDR cancers.


Assuntos
Annona , Neoplasias do Colo , Furanos , Lactonas , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Annona/química , Acetogeninas/farmacologia , Simulação de Acoplamento Molecular , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos
20.
Sci Rep ; 13(1): 21217, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040777

RESUMO

P-glycoprotein (P-gp), a membrane transport protein overexpressed in certain drug-resistant cancer cells, has been the target of numerous drug discovery projects aimed at overcoming drug resistance in cancer. Most characterized P-gp inhibitors bind at the large hydrophobic drug binding domain (DBD), but none have yet attained regulatory approval. In this study, we explored the potential of designing inhibitors that target the nucleotide binding domains (NBDs), by computationally screening a large library of 2.6 billion synthesizable molecules, using a combination of machine learning-guided molecular docking and molecular dynamics (MD). 14 of the computationally best-scoring molecules were subsequently tested for their ability to inhibit P-gp mediated calcein-AM efflux. In total, five diverse compounds exhibited inhibitory effects in the calcein-AM assay without displaying toxicity. The activity of these compounds was confirmed by their ability to decrease the verapamil-stimulated ATPase activity of P-gp in a subsequent assay. The discovery of these five novel P-gp inhibitors demonstrates the potential of in-silico screening in drug discovery and provides a new stepping point towards future potent P-gp inhibitors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Nucleotídeos , Simulação de Acoplamento Molecular , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Nucleotídeos/metabolismo , Resistencia a Medicamentos Antineoplásicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA